收藏本站   
欢迎来到答案网! 请  登录  |  注册 
   
答案网
  

答案网公众号
 网站首页 | 语文答案 | 数学答案 | 英语答案 | 物理答案 | 化学答案 | 历史答案 | 政治答案 | 生物答案 | 地理答案 | 课后习题答案 | 作文大全 | 美文阅读 | 求助中心
 练习册答案 | 暑假作业答案 | 寒假作业答案 | 阅读答案 | 学习方法 | 知识点总结 | 哲理小故事 | 祝福语大全 | 读后感 | 名人语录 | 题记大全 | 造句大全 | 心情不好的说说
提问 

数学期望和算术平均的关系,数学期望的公式是什么?


时间: 2020-7-23 分类: 作业习题  【来自ip: 13.114.196.118 的 匿名网友 咨询】 手机版
 问题补充 数学期望和算术平均的关系,数学期望的公式是什么?
  网友答案:
匿名网友
匿名网友

1楼
算术平均是来自样本的,是近似的;数学期望是母体的,是精确的。
  1、期望是个确定的数,是根据概率分布得到的。不管进不进行实验,期望都可以求出来。
  数学期望,又称为均值,即"随机变量取值的平均值"之意,这个平均是指以概率为权的加权平均。
  2、平均数(mean),是做多次实验之后,总和的平均数。
  
  扩展资料
  算数平均的特点
  1、算术平均数是一个良好的集中量数,具有反应灵敏、确定严密、简明易解、计算简单、适合进一步演算和较小受抽样变化的影响等优点。
  2、算术平均数易受极端数据的影响,这是因为平均数反应灵敏,每个数据的或大或小的变化都会影响到最终结果。
  数学期望的性质:
  1、设X是随机变量,C是常数,则E(CX)=CE(X)。
  2、设X,Y是任意两个随机变量,则有E(X+Y)=E(X)+E(Y)。
  3、设X,Y是相互独立的随机变量,则有E(XY)=E(X)E(Y)。
  4、设C为常数,则E(C)=C。
  参考资料来源:百科-数学期望
  参考资料来源:百度百科-算数平均数
  
匿名网友
匿名网友
2楼
公式主要为:、。共两个。
  在概率论和统计学中,数学期望知道(mean)(或均。值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,它反映随内机变量平均取值的大小。
  设连续性随机变量X的概率密度函数为f(x),若积分绝对收敛,则称积容分的值       为随机变量的数学期望,记为E(X):
  
  离散型随机变量X的取值为 ,  为X对应取值的概率,可理解为数据 出现的频率  ,则:
  
  
  扩展资料
  性质
  设C为一个常数,X和Y是两个随机变量。以下是数学期望的重要性质:
  1.  
  2. 
  3.  
  4. 当X和Y相互独立时,有 
  性质3和性质4可以推到到任意有限个相互独立的随机变量之和或之积的情况。
  参考资料:数学期望-百度百科
  
  相关问题列表
 学习方法推荐
 句子大全
 文库资料
 答案大全
 推荐问题
 热门回答
作业答案大全 www.zqnf.com